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Understanding the spatial variability in fracture initiation and fracture propagation is critical for avalanching
as both are required for an avalanche to release. Most of the previous research looked at the spatial variability
of fracture initiation. We focus on understanding the spatial variability of the fracture propagation potential
using the Extended Column Test (ECT). This work uses a new overlapping grid methodology which allowed

Is(f)); g:ln\jzsa:riabilit us to make repeat data collection on the same slope to collect data on two separate days at the slope scale
Snowpack v from two environmentally different sites (windy and sheltered), thereby capturing temporal changes in the
Propagation spatial variability of our results. In contrast to previous fracture propagation test research, our data

demonstrates considerable spatial variability in fracture propagation potential. Interestingly, at both the
windy and sheltered sites the first sampling day demonstrated a relatively random distribution of fracture
propagation potential results, while the second sampling day for both sites showed evidence of increased
resistance to propagation as well as increased spatial clustering at the scale of our observations. Since distinct
clustering or pockets of propagation and non propagation exist on some slopes, the practical implication of
our work is that it is often necessary to dig more than one snow pit on suspect slopes to assess stability, and
those slopes might be more accurately assessed by widely (greater than 10 m) spaced measurements.
Though our data are limited, these results represent the first statistically demonstrated temporal change in
snowpack spatial variability at the slope scale. However, in order to definitively address the question of
temporal changes in spatial patterns, much more work is needed on many slopes with varying weak layers
and snowpack conditions.

Avalanche forecasting

© 2008 Elsevier B.V. All rights reserved.

1. Introduction forecasting. Our paper focuses on investigating the spatial variability

of the fracture propagation potential at the slope scale, and how that

Seasonal snow varies both temporally and spatially. Both of these
aspects of variability have been examined to some extent in previous
work for a range of snowpack properties (e.g. resistance (Birkeland
et al., 1995); snow water equivalence (Bl6schl, 1999; Derksen et al.,
2000); snow depth (Dyer and Mote, 2006)). In terms of avalanches,
variations in fracture initiation and propagation are important since
both are required for an avalanche to release. Most previous research
focused on measurements associated with fracture initiation, such as
shear tests, compression tests or rutschblock tests (e.g., Conway and
Abrahamson, 1984; 1988; Fohn, 1989; Jamieson, 1995; Kronholm,
2004). The recent development of fracture propagation tests (Gau-
thier and Jamieson, 2006; Simenhois and Birkeland, 2006) allows the
assessment of the spatial variability of this property. Understanding
the spatial variability of the fracture propagation potential is a crucial
step for improving accuracy in field data collection and avalanche
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spatial variability changes over time.

Previous research demonstrates that the conditions for fracture
initiation are highly variable at the slope scale, though the exact
amount of variability has been a subject of debate. Schweizer et al.
(2008) provide a detailed review of the spatial variability literature, so
our review here will be brief. Conway and Abrahamson (1984; 1988)
first analyzed the spatial variability snowpack stability at the slope
scale by measuring shear strength along fracture lines of recently
triggered slab avalanches. Their papers triggered wider interest in the
direct examination of the spatial variability of the stability of the
snowpack and raised issues about the representativeness of a single
snowpack stability observation on a slope. In addition to further shear
frame research (Féhn, 1989; Logan et al., 2007), this work led to slope-
scale investigations of the variability of rutschblock tests (Jamieson,
1995; Campbell and Jamieson, 2007), small block compression-type
tests (Landry, 2002; Stewart and Jamieson, 2002; Landry et al., 2004;
Kronholm, 2004; Kronholm and Schweizer, 2003) and penetration
resistance (Birkeland, 1990; Birkeland et al., 1995; Birkeland et al.,
2004a; Kronholm, 2004; Kronholm et al., 2004).
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Recent work utilized the above data for geo-statistical analyses,
primarily using semivariograms (Kronholm and Schweizer (2003);
Campbell, 2004; Birkeland et al. (2004b); Logan et al. (2007). Results
are mixed, with some slopes or layers showing autocorrelation while
other slopes or layers did not. However, when autocorrelation exists,
the typical correlation length scale is in the order of several meters
(<0.5 m to>10 m), despite the different measurement types, different
scale triplet (Bloschl and Sivapalan, 1995), and different types of layer
(Schweizer et al., 2008). Furthermore, different layers on the same
slope sometimes have varying spatial structures (Birkeland et al.,
2004b; Kronholm, 2004).

There are far fewer investigations into the spatial variability of fracture
propagation propensity. This is partially because tests targeting fracture
propagation have only recently been developed (Gauthier and Jamieson,

2006; Simenhois and Birkeland, 2006). However, Johnson and Birkeland
(2002) state that shear quality (and closely related fracture character)
may provide a qualitative measure of how well a fracture will propagate
through a given weak layer, and Schweizer et al. (2008) suggest that
shear quality (Johnson and Birkeland, 2002) and fracture character (van
Herwijnen and Jamieson, 2002) should show less variability than other
test scores. Results from Campbell and Jamieson (2007) demonstrate this
reduced variability. Simenhois and Birkeland (2006; 2007) conducted
limited slope scale studies of fracture propagation test results. Using the
Extended Column Test (ECT), they investigated two slopes and found ECT
results to be relatively uniform across those slopes, with variations on one
slope explainable by changes in slab properties.

Recent research shows our understanding of fracture propagation
is evolving (Heierli et al., 2008), and the relationship of ECT results to

Beehive

Fig. 1. (A) Map of North America, showing the United States and the field area in southwestern Montana. (B) Elevation map with 100 m contour intervals, showing the locations of the
two field sites; Beehive and Cedar. Inset maps of Cedar (C) and Beehive (D) with the field data from day 1 at both sites shown as squares and day 2 as circles, where white symbols are
ECTN and black symbols are ECTP (illustrates the overlapping grids), 20 m contour intervals are also shown and data is presented on an aerial photograph of the area showing

vegetation and general slope surroundings.
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actual fracture propagation is not known. In the ECT the fracture is
initiated over a length of approximately 30 ¢cm and then may
propagate an additional 60 cm. We do not know how propagation
across this relatively short distance relates to the longer slope-scale
propagations required for avalanche release, so we must treat our ECT
results as an index of fracture propagation rather than an actual
measure of fracture propagation.

Despite the extensive body of work on spatial variability, few studies
have assessed temporal changes in that spatial variability. Such work is
important from a practical sense because it informs avalanche
practitioners the extent to which observed patterns tend to persist
over time. Changing patterns would offer additional challenges for those
attempting to predict slope stability. Birkeland and Landry (2002) first
looked at this problem and analyzed limited data to suggest that spatial
variability might increase through time, but they could not form strong
conclusions. The work by Logan et al. (2007) focussed on this problem
with a specialized sampling strategy on two given slopes. While some
measures of spatial variability of shear frame test results (such as the
interquartile range) increased through time, they found other evidence
of temporal changes of spatial variability was limited.

Our research has two primary goals. First, we investigate the slope
scale spatial variability of fracture propagation potential using the ECT.
Second, we attempt to quantify temporal changes in that spatial
variability. Our field sites include one slope that is relatively protected
from the wind and another that is highly wind affected. Our work
involves developing a new field sampling strategy, as well as utilizing
new data analysis techniques to quantify whether our results are
clustered or random.

2. Study area

We collected data on 2 days at each of the two field sites. These two
sites are both situated in southwestern Montana, USA near the resort
town of Big Sky (Fig. 1). Located within the intermountain avalanche
climate zone, the sites typically exhibit a variety of avalanche and
snowpack conditions, including persistent weak layers (Mock and
Birkeland, 2000). This research targeted persistent weak layers or near
surface weaknesses. The two sites exhibited differences in exposure to
the wind, with one site representing typical sheltered conditions (where
most of the previous spatial variability work has been undertaken),
while the other represented a highly wind exposed location.

Our first site is located in the lower reaches of Beehive Basin
(111.3867 W, 45.3177 N) at an elevation of 2520 m on a WSW (average
253°) aspect. The Beehive slope is a wind sheltered slope approxi-
mately 70 m wide and 80 m high with trees on the northern and
southern edges. This site has an average slope angle of 30°, decreasing
to 26° towards the top and displaying a small amount of cross
slope curvature with aspects ranging from 238° to 262°. Our second
site is located below the lower slopes of the east ridge of Mt. Cedar
(111.4838 W, 45.2350 N) at an elevation of 2770 m on a NNE (average
022°) aspect. The Cedar slope is a wind swept slope approximately
60 mwide and 50 m high with trees on the eastern and northern edges.
The Cedar site has an average slope angle 0of 29° and has a small amount
of cross slope curvature with aspect ranging from 018° to 030°.

3. Methods
3.1. Field data
At the Beehive site we performed 35 sets of snow stability and

fracture propagation potential tests each day, and at the Cedar site we
performed 16 sets of tests per day. The number of pits was less at the

Fig. 2. Photo from day 2 at Beehive, showing the day 2 snow pits and the remnants of
the day 1 snowpits in between and below the grid illustrating the 10 m spacing in the
grid, and the 5 m offset layout for the second day.

Cedar site because of access logistics and the size of the slope limited
our sampling. At both sites, we spaced tests 10 m apart in a regular
rectangular (Beehive) or square (Cedar) gridded layout. For Beehive
this was achieved with a grid of 5x7 snow tests (extent 40 m
widex 60 m high) and for Cedar with a grid of 4x4 (extent 30 m
wide x 30 m high). Care was taken to minimise the disturbance to the
snow between the 10 m grid locations. At the end of the first day, this
resulted in observations every 10 m within the grid and an area of
approximately 80 m? of undisturbed snow between observation
points. On the second day at each field site the rectangular or square
grid was off-set by 5 m up and across the slope, so that tests were
performed in the middle of the 80 m? of undisturbed snow (Fig. 2).

Our second day's observations allowed us to assess temporal
changes on the slope. This technique differed from those used by
Birkeland and Landry (2002) and Logan et al. (2007), and offered both
advantages and disadvantages. The advantages are that our technique
maximized the extent of our sampling, and also allowed us to sample
the same part of a slope rather than adjacent parts of the same slope as
had been done previously. However, a possible problem is that our first
day's data collection, which involved walking between grid points on
the slope (Fig. 2), might affect our second day's observations. Birkeland
and Landry (2002) hypothesized that one of the mechanisms for
temporal changes in spatial variability could be creep, and Logan
(2005) found some evidence for this for shear frame results in his data
analyses. Our sampling technique likely affected creep on our slope
and therefore may have affected the patterns we observed. However,
no perfect technique for such temporal analyses currently exists.

The time between the two sampling days varied between the sites.
The snowpack at the Beehive site contained a persistent weak layer of
faceted grains (Fig. 3), so we waited longer between the days. At this site
our first data collection effort was on 5 February 2008, with our second
day on 14 February. At the Cedar site the snowpack did not contain
persistent weaknesses. Instead, the layers of interest consisted of a
variety of wind deposited layers sitting on relatively lower density snow
(Fig. 3). As such, we waited only 4 days between samples at this site,
with our first day on 7 February 2008 and the second day on 11 February.
The snow profiles were undertaken at both sites on both days, at the
lower left corner of the grid (when observed from down slope).

At the Beehive site each of the 35 snow tests included at least one
stuffblock (SB) test (Birkeland and Johnson, 1999) and one extended
column test (ECT) (Simenhois and Birkeland, 2006) using the
stuffblock method to create the load increments. At the Cedar site
each of the 16 snow tests included at least one compression test (CT)

Fig. 3. (A) Snow profile at Beehive showing the relatively shallow snowpack with persistent weaknesses, and the location of the fracture at the bottom of the layer of faceted grains (at
46 cm). (B) Snow profile at Cedar day showing the deeper snowpack with multiple wind deposited layers and the location of the fracture at the bottom of the layer of relatively lower

density snow (43 cm down from the surface).
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(Jamieson, 1999) and one ECT. In each case the support was 0.09 m?
(SB or CT) and 0.27 m? (ECT). At both sites on both days for every test
the following parameters were also recorded: shear quality (Johnson,
and Birkeland, 2002), fracture character (van Herwijnen and
Jamieson, 2002), snow depth, depth to failure, aspect and slope
angle. The same person performed all the tests at one location on both
days. At the Beehive site an additional set of 10 snow depth and
SnowMicroPen (SMP) observations were made for every third snow
test, resulting in 120 SMP and snow depth measurements. These latter
measurements are not utilized in this paper.

3.2. Data analysis

We analyzed both sites (Beehive and Cedar) in the same way. Both
sets of data have two observation days, and each day has been treated
as a separate data set, with changes between the days regarded as
temporal changes to the same slope. Our analysis concentrates on the
spatial variability of the propagation or non-propagation of the ECT
test rather than the stability test score as in previous work.

When the ECT results are plotted on the grid, we wanted to determine
if there was a spatial pattern in the results. If a pattern is present, then is
the pattern spatially clustered, random or dispersed, and at what spatial
scales is this pattern discernible? We used two methods to address this
issue; Moran's I (Moran, 1948; Fischer et al., 1996) and a Modified Ripley's
K (Ripley, 1981; Cressie, 1993) using a Monte Carlo simulation.

3.2.1. Moran's |

Moran's I coefficient of spatial autocorrelation summarizes a com-
plete spatial distribution into a single number (Moran, 1948). Moran's
I is a weighted correlation coefficient used to detect departures from
spatial randomness, where departures from randomness indicate
spatial patterns such as clusters (Fischer et al., 1996).

The Spatial Autocorrelation: Moran's I tool in the spatial statistics
tool bar in ArcGIS 9.2 was used in this analysis. The tool measures
spatial autocorrelation on both feature locations and feature values
simultaneously, calculating the Moran's I value and a Z score. The null
hypothesis of this tool states that “there is no spatial clustering of the
values” and when the Z score is greater than the desired significance
level, the null hypothesis can be rejected. In this paper we consider
both the 10% and 5% significance level. Inspection of the Moran's I
indicated if the features exhibit a dispersed (values nearer —1.0) or
clustered pattern (values nearer + 1.0).

3.2.2. Modified Ripley's K using Monte Carlo simulation

Ripley's K function has been used for a wide range of applications
to summarise a given point pattern, test hypotheses about the pattern,
or estimate parameters and fit models (Ripley, 1981; Cressie, 1993). In
contrast to Moran's I, Ripley's K summarises the spatial dependence
over a range of distances. This is desirable for our analysis since
Moran's I provides no information on spatial scales of clustering or
dispersion, or if this changes at different spatial scales.

For a given grid we first identified a set of “events” (for our data an
event was where an ECT did not propagate (ECTN)), resulting in a
binary grid. The fraction of events was calculated for a given search
radius around each event, and the average fraction of events for a
given search radius was calculated as a function of the area of the
study area domain (as defined by outer edge of points) within the
circle. This can be summarized by Eq. (1):

n
> AiFi
_i=1
F== (1)
> A
i=1
where E is the average fraction of events for a given search radii
around each measurement location, Ai is the area of the i-th circle

within the study domain, and Fi is the fraction of events within a
circle, relative to number of measurements within the circle. Eq. (1)
accounts for edge effects by weighting the fraction of events (Fi) by
the area of the study domain within the search radius (Ai).

The average fraction of events for a given search radii (E) was then
computed for multiple search radii. A spatial signature is produced by
simply plotting E for multiple distances. If the average fraction of
events for a particular evaluation distance is greater than the average
fraction of events throughout the study domain, the distribution is
considered clustered at that distance. Comparing the fraction of
events at a given distance to the average fraction of events over the
study domain assumes that the process is spatially homogenous at the
scale of the study domain — for example, differences in propagation
potential within the study domain can result from trends in
propagation potential at the scale of the study domain. However,
the field data only allow testing of spatial clustering at spatial scales
smaller than the extent of the study domain.

Confidence bounds for spatial clustering are produced using
Monte Carlo trials. This approach is novel in snow science, but it is
not unique and has been used in other disciplines to calculate
confidence envelopes with Ripley's K (e.g. in ecology; Wiegand and
Moloney, 2004). Monte Carlo trials test if the underlying spatial
process was purely random. To make this assessment 1000 random
grids were generated by re-sampling (without replacement) from
the field data. This maintained the same averagepropagation
probability as the field data for every one of the 1000 random
grids. Essentially this process simply re-shuffled the field data 1000
times, such that the distribution of spatial structures and corre-
sponding spatial signature in the 1000 random grids only occurs due
to chance. The spatial signature for each of the 1000 random grids
provides 1000 different summaries of E against distance, and these
1000 plots of the spatial signature are used to construct confidence
bounds at the 5, 10, 90 and 95 percentiles.

4. Results

The field data for both days at Beehive and Cedar are presented in
Fig. 4 and summarised in Table 1. At both sites the second day's
observations were made 5 m up slope and 5 m across slope (to the
right) when viewed from the bottom of the slope. Qualitative
inspection of the field data suggests there is some spatial structure
at both Beehive and Cedar.

We considered that the patterns in ECTP and ECTN were not solely
due to random variations and that there might be a discernable
pattern at a given scale in the field data. We also observed changes in
the spatial pattern between Day 1 and Day 2 at each of the sites. At
Beehive we noticed a decrease in ECTP results to the right and upper
parts of the slope. At Cedar the central part of the slope showed a
decrease in the number of ECTP results. Furthermore, there is a
difference in the mean drop height (in cm) and number of taps for the
ECTP results on the 2 days, with Beehive increasing from 42 cm on
day 1 to 50 cm on day 2, and Cedar increasing from 5 taps to 14 taps for
ECTP results (Table 1).

Results from the Moran's I analysis for Beehive Day 1 and Cedar
Day 1 both indicate, through the low Z score, that the point pattern of
ECT results shows no coherent spatial pattern and can be considered
random (Table 1). The results for Beehive Day 2 and Cedar Day 2
indicate that there is less than a 5% likelihood that the clustered point
pattern is the result of random chance, where a Z score of 1.65 is 10%,
1.96 is 5% and 2.58 is 1%. While the Moran's I value is low at Beehive
and Cedar (0.02 and 0.03 respectively) the high Z score (2.13 and
2.11) suggests that there is greater than 95% chance that this point
pattern is not the result of random chance. Thus, our results suggest a
temporal change from a random pattern to a more spatially organized
pattern of ECT results at the scale of our observations for both of our
sites.
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Fig. 4. Data from Day 1 (left) and Day 2 (right) at Beehive (top row) and Cedar (bottom row) as viewed from the bottom of the slope. Where the ECT propagated it is shown in gray
and the drop height (in cm) is shown for Beehive (top row) and the number of taps for Cedar (bottom row). Note that the spacing between each observation is 10 m and the grid on

the second day was off set by 5 m up slope and 5 m to the right.

Our Ripley's K Monte Carlo simulations or “spatial signatures”
reinforce the Moran's [ results, as well as providing additional
information on the distances at which clustering or dispersion might
be occurring. Fig. 5 (Beehive) and Fig. 6 (Cedar) show plots of the
spatial signature from the two days with E against distance for the
original field data (thick black line), the 1000 random grids (thin grey
lines), and the 5, 10, 90, and 95 percentile lines (thick grey lines).
Results are shown for two cases: in the first case (left plots) the event is
defined as where the pit did not propagate (ECTN), and in the second

Table 1

case (right plots) the event is defined as where the pit did propagate
(ECTP). The top (bottom) set of plots show results for the first (second)
field day. If the field data is outside the confidence limits, then it is
unlikely (less than 5 or 10% chance) that the observed spatial patterns
in the field data are random at the specified distance. Values above the
top grey line indicate clustered data while values below the bottom
grey line represent dispersed data at those distances.

The field data for Day 1 at Beehive (Fig. 5, top row) lie mostly
within the 10 and 90 percentile confidence limits. However, there are

Beehive and Cedar data, showing the number of observations, ECTP, ECTN, mean drop height or number of taps for ECTP, standard deviation for ECTP results, Moran's I, Z score and

Moran's summary comment.

Site/day No. Obs ECTP ECTN Mean drop height or number of taps Std dev Moran's [ Z score Morans [ summary comment

Beehive day 1 35 23 12 42 cm 17 —0.04 —0.64 The pattern is neither clustered nor dispersed. (i.e. random)

Beehive day 2 35 20 15 50 cm 17 0.02 2.13 There is less than a 5% likelihood that this clustered pattern is the
result of random chance

Cedar day 1 16 8 8 5 taps 29 —0.05 0.42 The pattern is neither clustered nor dispersed. (i.e. random)

Cedar day 2 16 6 10 14 taps 6.9 0.03 211 There is less than a 5% likelihood that this clustered pattern is the

result of random chance
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some distances at which it is likely that either clustering (greater than
90%) or dispersion (less than 10%) is occurring. ECTN on day 1 is
dispersed (10% confidence interval) at distances greater than 30 m
and less than 50 m, while at distances greater than 50 m there is a
suggestion of clustering. ECTP on day 1 is dispersed (10% confidence
interval) at distances greater than 25 m and less than 40 m, while at
distances greater than 50 m there is a slight tendency to show
clustering.

Day 2 at Beehive (Fig. 5, bottom row) shows a temporal change
toward increased spatial organization. The field data are close, and
often exceed the 90 and 95 percentile confidence limits at various
distances. Our results show that there is strong evidence that ECTN
results on day 2 are clustered at distances less than 30 m and at
distances greater than 45 m. ECTP on day 2 is also likely to be clustered
(95% confidence interval) at distances less than 15 m and at distances
greater than 45 m.

Similar to the changes observed for Beehive, the data from Cedar
also show a temporal change toward increased spatial organization.
Our Day 1 data (Fig. 6, top row) lie in the middle of the distribution,
suggesting a relatively random spatial distribution. The only exception
is the slightest tendency to show clustering at distances between 30
and 35 m in the ECTP results, but this evidence is not strong.

In contrast, Day 2 at Cedar (Fig. 6, bottom row) shows that the field
data for ECTN is predominantly clustered, especially at distances less
than 20 m, and often exceeds the 90 and 95 percentile confidence
limits at various distances. ECTP on day 2 has an interesting pattern.
Those results are likely to be clustered (95% confidence interval) at
distances less than 15 m and are likely to be dispersed at distances
greater than 22 m but less than 30 m.
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The Monte Carlo approach provides a novel method for analyzing
the clustering or dispersion of ECT results. This technique reinforced
our Moran's I results which suggested that both sites demonstrated
temporal changes from more spatially random patterns to more
spatially organized patterns at the scale of our observations. However,
the Monte Carlo approach also provided additional information by
allowing us to quantify the distances over which the spatial
organization (either clustering or dispersion) was occurring.

5. Discussion and conclusions

Our data demonstrate that considerable spatial variability exists in
ECT results under some conditions (Fig. 4 and Table 1). This contrasts
with previous work by Simenhois and Birkeland (2006; 2007) which
suggested relatively uniform ECT results at the slope scale. These
results also appear to run counter to analyses showing extremely low
false stable rates (around 3%) found for ECT test results for a large
database (Simenhois and Birkeland, 2006; 2007). In our study some
slopes exhibited around 50% ECTP and 50% ECTN results, suggesting
either a false-stable or a false-unstable rate of about 50% for those
particular slopes. Thus, on many slopes the ECT appears to provide
stability data with reasonable confidence, but there are some slopes
(such as the slopes in this research) where the spatial variability of
results cast doubt on the ability of any one test to accurately assess the
slope stability. The differences between the results presented here and
those from previous work may be due in part to the extent of this
work, which is greater than that of previous studies. There may also be
differences in the variability of the ECT results related to the layer on
which the fracture is occurring and the setting or climatic region in
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Fig. 5. Ripley's K Monte Carlo simulations “Spatial signatures” for data from Beehive. Left column = Events ECTN. Right column = Events ECTP. Top row = Day 1 (23 ECTP). Bottom
row = Day 2 (20 ECTP). The thick black line is the observed data, thin grey lines represent 1000 random grids, and thick grey lines are the 5th, 10th, 90th, and 95th percentile from the

random simulations.
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row = Day 2 (6 ECTP). The thick black line is the observed data, thin grey lines represent 1000 random grids, and thick grey lines are the 5th, 10th, 90th, and 95th percentile from the

random simulations.

which the slope is situated. However, at this point we cannot
definitively explain the differences between this paper and previous
research. Our work on this subject is ongoing, and we hope that
ongoing field work will provide new insights.

Though we use two different methods for analyzing our fracture
propagation data, both methods indicate the same trend in results. In
each case the initial sampling day demonstrated a relatively random
distribution of ECT results, while the second sampling day for both the
Beehive and Cedar sites showed evidence of increased spatial
clustering at the scale of our observations. Our results are encouraging
because they are the first statistically demonstrated documentation
of a temporal change in spatial variability of fracture propagation
(as indexed by the ECT) at the slope scale. However, we have only
collected data from two slopes, and we only have two snapshots of
each slope. In order to definitively address the question of temporal
changes in spatial patterns, we need much more work on many slopes
with varying weak layers and snowpack conditions.

Our work has practical implications. First, clustering of propaga-
tion and non-propagation may partially explain some non-avalanche
events (Birkeland et al., 20064, b). In these cases fractures initiated
and propagated for some distance, but avalanches did not immedi-
ately release. Perhaps strong zones that resisted fracture propagation
were partially responsible for these events. Second, since distinct
clustering or pockets of propagation and non propagation exist on
some slopes it seems prudent to follow the recommendations of
Birkeland and Chabot (2006) to dig more than one snow pit on
suspect slopes. Knowing the spatial variability or degree of clustering
on a slope and the correlation length scale of this clustering would
allow the assessment of the most beneficial spacing to minimise false
stable results and maximise representative data collection. Schweizer

et al. (2008) state that multiple snow pits on the same slope should be
spaced out further apart than the correlation length scale (which is
unknown), but recommended that two tests should be spaced out at
least 10 m in order to get independent results (inferring a correlation
length scale of less than 10 m). However, the degree of spatial
variability is not currently known for a given slope, a given layer, how
it changes over time, or in relation to environmental factors of the
specific slope, and no reliable guidance exists for assisting observers in
identifying the correlation length. Since our results still show evidence
of clustering when tests are 10 m apart, some slopes might be more
accurately assessed by more widely spaced measurements. The
implicit implication here is that slopes should be viewed as a whole
and when observers are considering where they would like to place
their representative snow pits they should consider which two
locations would best represent this slope.

More data are needed to document the spatial and temporal
variability of the snow pack in a number of different locations, slopes,
settings and environmental conditions. These are required to define a
typical correlation length scale for a specific scenario or environment,
in order to provide guidance on the optimal spacing of multiple snow
pits on a given slope. However, these data are not yet available, so
assessing avalanche conditions using snowpits continues to be an
experience-based exercise requiring a conservative approach.
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